Первичная обработка данных (Statistica)



Скачать 100.2 Kb.
страница1/2
Дата02.06.2018
Размер100.2 Kb.
Название файлаПарная корреляция (MS Excel).doc
  1   2

Парная корреляция (MS Excel)

Краткие теоретические сведения


Корреляция представляет собой меру зависимости переменных. Наиболее известна корреляция Пирсона. При вычислении корреляции Пирсона предполагается, что переменные измерены, как минимум, в интервальной шкале. Некоторые другие коэффициенты корреляции могут быть вычислены для менее информативных шкал. Коэффициенты корреляции изменяются в пределах от 1,00 до +1,00. Значение –1,00 означает, что переменные имеют строгую отрицательную корреляцию. Значение +1,00 означает, что переменные имеют строгую положительную корреляцию. Отметим, что значение 0,00 означает отсутствие корреляции.

Корреляция Пирсона предполагает, что две рассматриваемые переменные измерены, по крайней мере, в интервальной шкале. Она определяет степень, с которой значения двух переменных «пропорциональны» друг другу. Важно, что значение коэффициента корреляции не зависит от масштаба измерения. Например, корреляция между ростом и массой будет одной и той же, независимо от того, проводились измерения в дюймах и фунтах или в сантиметрах и килограммах. Пропорциональность означает просто линейную зависимость. Корреляция высокая, если на графике зависимость можно представить прямой линией (с положительным или отрицательным углом наклона).

Проведенная прямая называется прямой регрессии или прямой, построенной методом наименьших квадратов. Последний термин связан с тем, что сумма квадратов расстояний (вычисленных по оси Y) от наблюдаемых точек до прямой является минимальной. Заметим, что использование квадратов расстояний приводит к тому, что оценки параметров прямой сильно реагируют на выбросы.

Коэффициент корреляции Пирсона (r) представляет собой меру линейной зависимости двух переменных. Если возвести его в квадрат, то полученное значение коэффициента детерминации (r2) представляет долю вариации, общую для двух переменных (иными словами, степень зависимости или связанности двух переменных). Чтобы оценить зависимость между переменными, нужно знать как величину корреляции, так и ее значимость.

Уровень значимости, вычисленный для каждой корреляции, представляет собой главный источник информации о надежности корреляции. Значимость определенного коэффициента корреляции зависит от объема выборок. Критерий значимости основывается на предположении, что распределение остатков (т. е. отклонений наблюдений от регрессионной прямой) для зависимой переменной Y является нормальным (с постоянной дисперсией для всех значений независимой переменной X).

Несколько слов о выбросах. По определению, выбросы являются нетипичными, резко выделяющимися наблюдениями. Так как при построении прямой регрессии используется сумма квадратов расстояний наблюдаемых точек до прямой, то выбросы могут существенно повлиять на наклон прямой и, следовательно, на значение коэффициента корреляции. Поэтому единичный выброс (значение которого возводится в квадрат) способен существенно изменить наклон прямой и, следовательно, значение корреляции.

Обычно считается, что выбросы представляют собой случайную ошибку, которую следует контролировать. К сожалению, не существует общепринятого метода автоматического удаления выбросов. Чтобы не быть введенными в заблуждение полученными значениями, необходимо проверить на диаграмме рассеяния каждый важный случай значимой корреляции. Очевидно, выбросы могут не только искусственно увеличить значение коэффициента корреляции, но также реально уменьшить существующую корреляцию.

Если после выполнения процедуры поиска и удаления выбросов коэффициент корреляции остался низким и уровень значимости меньше критического 0,05, то следует увеличить размер выборки, воспользовавшись простым соотношением: .





Поделитесь с Вашими друзьями:
  1   2


База данных защищена авторским правом ©nashuch.ru 2017
обратиться к администрации

    Главная страница
Контрольная работа
Курсовая работа
Лабораторная работа
Пояснительная записка
Методические указания
Рабочая программа
Методические рекомендации
Теоретические основы
Практическая работа
Учебное пособие
Общие сведения
Общая характеристика
Физическая культура
Теоретические аспекты
Федеральное государственное
Дипломная работа
Общая часть
Самостоятельная работа
Методическое пособие
История развития
квалификационная работа
государственное бюджетное
Выпускная квалификационная
Направление подготовки
Техническое задание
Технологическая карта
Теоретическая часть
Понятие предмет
Краткая характеристика
прохождении производственной
Общие положения
Общие требования
Методическая разработка
Исследовательская работа
Описание технологического
Металлические конструкции
Электрические машины
Практическое занятие
Гражданское право
Технология производства
Математическое моделирование
Техническое обслуживание
История возникновения
физическая культура
Основная часть
Описание конструкции
История создания
Решение задач
Правовое регулирование
учреждение высшего
Сравнительная характеристика