Сайт nashuch.ru и его партнеры используют на этом сайте определенные технологии, в том числе файлы cookie, чтобы подбирать материалы и рекламу на основе интересов и анализа активности пользователей. Чтобы узнать подробности, ознакомьтесь с нашей политикой конфиденциальности. Оставаясь на сайте, вы даете согласие на использование этих технологий. nashuch.ru также участвует в рекламной деятельности третьих сторон, которая учитывает интересы пользователей. Это позволяет поддерживать наши сервисы и предлагать вам подходящие материалы. Нажимая кнопку «Принять», вы выражаете согласие с описанной рекламной деятельностью.

принять

Корреляционно-регрессионый анализ зависимости работающих активов от капитала по показателям 32 банков


Проверка адекватности регрессионной модели



Скачать 243.42 Kb.
страница16/17
Дата23.02.2019
Размер243.42 Kb.
Название файлакурсовая.doc
Учебное заведениеМосковский Государственный Технический Университет МАМИ
ТипКурсовая
1   ...   9   10   11   12   13   14   15   16   17
Проверка адекватности регрессионной модели.
Для практического использования моделей регрессии большое значение имеет их адекватность, т.е. соответствие фактическим статистическим данным.

Корреляционный и регрессионный анализ обычно (особенно в условиях так называемого малого и среднего бизнеса) проводится для ограниченной по объёму совокупности. Поэтому показатели регрессии и корреляции – параметры уравнения регрессии, коэффициенты корреляции и детерминации могут быть искажены действием случайных факторов. Чтобы проверить, насколько эти показатели характерны для всей генеральной совокупности, не являются ли они результатом стечения случайных обстоятельств, необходимо проверить адекватность построенных статистических моделей.

При численности объектов анализа до 30 единиц возникает необходимость проверки значимости (существенности) каждого коэффициента регрессии. При этом выясняют насколько вычисленные параметры характерны для отображения комплекса условий: не являются ли полученные значения параметров результатами действия случайных причин.

Значимость коэффициентов простой линейной регрессии (применительно к совокупностям, у которых n<30) осуществляют с помощью t-критерия Стьюдента. При этом вычисляют расчетные (фактические) значения t-критерия

д
ля параметра a0 :

для параметра a1 :

г
де n - объём выборки;


- среднее квадратическое отклонение результативного признака от выравненных значений ŷ ;
или
- среднее квадратическое отклонение факторного признака x от общей средней .

Вычисленные по вышеприведенным формулам значения сравнивают с критическими t , которые определяют по таблице Стьюдента с учетом принятого уровня значимости α и числом степеней свободы вариации . В социально-экономических исследованиях уровень значимости α обычно принимают равным 0,05. Параметр признаётся значимым (существенным) при условии, если tрасч> tтабл . В таком случае практически невероятно, что найденные значения параметров обусловлены только случайными совпадениями.


Т
еперь я рассчитаю t-критерий Стьюдента для моей модели регрессии.

- это средние квадратические отклонения.



Расчетные значения t-критерия Стьюдента:







По таблице распределения Стьюдента я нахожу критическое значение t-критерия для ν= 32-2 = 30 . Вероятность α я принимаю 0,05. tтабл равно 2,042. Так как, оба значения ta0 и ta1 больше tтабл , то оба параметра а0 и а1 признаются значимыми и отклоняется гипотеза о том, что каждый из этих параметров в действительности равен 0 , и лишь в силу случайных обстоятельств оказался равным проверяемой величине.


Проверка адекватности регрессионной модели может быть дополнена корреляционным анализом. Для этого необходимо определить тесноту корреляционной связи между переменными х и у. Теснота корреляционной связи, как и любой другой, может быть измерена эмпирическим корреляционным отношением ηэ , когда δ2 (межгрупповая дисперсия) характеризует отклонения групповых средних результативного признака от общей средней:.

Говоря о корреляционном отношении как о показателе измерения тесноты зависимости, следует отличать от эмпирического корреляционного отношения – теоретическое.



Теоретическое корреляционное отношение η представляет собой относительную величину, получающуюся в результате сравнения среднего квадратического отклонения выравненных значений результативного признака δ, то есть рассчитанных по уравнению регрессии, со средним квадратическим отношением эмпирических (фактических) значений результативности признака σ:
,
где ; .
Тогда .
Изменение значения η объясняется влиянием факторного признака.

В основе расчёта корреляционного отношения лежит правило сложения дисперсий, то есть , где - отражает вариацию у за счёт всех остальных факторов, кроме х , то есть являются остаточной дисперсией:


.
Тогда формула теоретического корреляционного отношения примет вид:
,
или .
Подкоренное выражение корреляционного выражения представляет собой коэффициент детерминации (мера определенности, причинности).

Коэффициент детерминации показывает долю вариации результативного признака под влиянием вариации признака-фактора.

Теоретическое корреляционное выражение применяется для измерения тесноты связи при линейной и криволинейной зависимостях между результативным и факторным признаком.

Как видно из вышеприведенных формул корреляционное отношение может находиться от 0 до 1. Чем ближе корреляционное отношение к 1, тем связь между признаками теснее.


Теоретическое корреляционное отношение применительно к моему анализу я рассчитаю двумя способами:



Полученное значение теоретического корреляционного отношения свидетельствует о возможном наличии среднестатистической связи между рассматриваемыми признаками. Коэффициент детерминации равен 0,62. Отсюда я заключаю, что 62% общей вариации работающих активов изучаемых банков обусловлено вариацией фактора – капитала банков (а 38% общей вариации нельзя объяснить изменением размера капитала).
Кроме того, при линейной форме уравнения применяется другой показатель тесноты связи – линейный коэффициент корреляции:
,
где n – число наблюдений.

Для практических вычислений при малом числе наблюдений (n≤20÷30) линейный коэффициент корреляции удобнее исчислять по следующей формуле:


.
Значение линейного коэффициента корреляции важно для исследования социально-экономических явлений и процессов, распределение которых близко к нормальному. Он принимает значения в интервале: -1≤ r ≤ 1.

Отрицательные значения указывают на обратную связь, положительные – на прямую. При r = 0 линейная связь отсутствует. Чем ближе коэффициент корреляции по абсолютной величине к единице, тем теснее связь между признаками. И, наконец, при r = ±1 – связь функциональная.

Используя данные таблицы 1 я рассчитала линейный коэффициент корреляции r. Но чтобы использовать формулу для линейного коэффициента корреляции рассчитаем дисперсию результативного признака σy:



Квадрат линейного коэффициента корреляции r2 называется линейным коэффициентом детерминации. Из определения коэффициента детерминации очевидно, что его числовое значение всегда заключено в пределах от 0 до 1, то есть 0 ≤ r2 ≤ 1. Степень тесноты связи полностью соответствует теоретическому корреляционному отношению, которое является более универсальным показателем тесноты связи по сравнению с линейным коэффициентом корреляции.

Факт совпадений и несовпадений значений теоретического корреляционного отношения η и линейного коэффициента корреляции r используется для оценки формы связи.

Выше отмечалось, что посредством теоретического корреляционного отношения измеряется теснота связи любой формы, а с помощью линейного коэффициента корреляции – только прямолинейной. Следовательно, значения η и r совпадают только при наличии прямолинейной связи. Несовпадение этих величин свидетельствует, что связь между изучаемыми признаками не прямолинейная, а криволинейная. Установлено, что если разность квадратов η и r не превышает 0,1 , то гипотезу о прямолинейной форме связи можно считать подтвержденной. В моем случае наблюдается примерное совпадение линейного коэффициента детерминации и теоретического корреляционного отношения, что дает мне основание считать связь между капиталом банков и их работающими активами прямолинейной.
Показатели тесноты связи, исчисленные по данным сравнительно небольшой статистической совокупности, могут искажаться действием случайных причин. Это вызывает необходимость проверки их существенности, дающей возможность распространять выводы по результатам выборки на генеральную совокупность.

Для оценки значимости коэффициента корреляции r используют t-критерий Стьюдента, который применяется при t-распределении, отличном от нормального.

При линейной однофакторной связи t-критерий можно рассчитать по формуле:
,
где (n - 2) – число степеней свободы при заданном уровне значимости α и объеме выборки n.

Полученное значение tрасч сравнивают с табличным значением t-критерия (для α = 0,05 и 0,01). Если рассчитанное значение tрасч превосходит табличное значение критерия tтабл, то практически невероятно, что найденное значение обусловлено только случайными колебаниями (то есть отклоняется гипотеза о его случайности).

Так, для коэффициента корреляции между капиталом и работающими активами получается:

Если сравнить полученное tрасч с критическим значением из таблицы Стьюдента, где ν=30, а α=0,01 (tтабл=2,750), то полученное значение t-критерия будет больше табличного, что свидетельствует о значимости коэффициента корреляции и существенной связи между капиталом и работающими активами.

Таким образом, построенная регрессионная модель ŷ=245,75+1,42x в целом адекватна, и выводы полученные по результатам малой выборки можно с достаточной вероятностью распространить на всю гипотетическую генеральную совокупность.





Министерство общего и профессионального
Iii. заключение
Причинно-следственная связь.
Функциональные и стохастические связи.
Прямые и обратные связи.
Прямолинейные и криволинейные связи.
Однофакторные и многофакторные связи.
Статистические методы моделирования связи.
Статистическое моделирование связи методом
Корреляционный и регрессионный анализ.


Поделитесь с Вашими друзьями:
1   ...   9   10   11   12   13   14   15   16   17


База данных защищена авторским правом ©nashuch.ru 2017
обратиться к администрации | Политика конфиденциальности

    Главная страница
Контрольная работа
Курсовая работа
Лабораторная работа
Пояснительная записка
Методические указания
Рабочая программа
Методические рекомендации
Теоретические основы
Практическая работа
Учебное пособие
Общие сведения
Общая характеристика
Теоретические аспекты
Физическая культура
Дипломная работа
Самостоятельная работа
История развития
Федеральное государственное
Направление подготовки
Техническое задание
Методическое пособие
Общая часть
квалификационная работа
Краткая характеристика
Технологическая карта
Выпускная квалификационная
государственное бюджетное
Теоретическая часть
Методическая разработка
Техническое обслуживание
Металлические конструкции
Общие положения
прохождении производственной
Технология производства
Математическое моделирование
Исследовательская работа
Правовое регулирование
Уголовное право
Организация работы
Решение задач
Общие требования
Описание технологического
Практическое занятие
учреждение высшего
Основная часть
Понятие предмет
Гражданское право
Электрические машины
физическая культура
История возникновения
Учреждение высшего