А. Р. Познер доктор философских наук, профессор кафедры философии Московского Государственного техни­ческого университета им Н. Э. Баумана



страница85/255
Дата28.09.2018
Размер3.25 Mb.
Название файлаStudmed.ru_lebedev-sa-filosofiya-nauki-slovar-osnovnyh-terminov_d01e2a6ed32.doc
Учебное заведениеА.Р. Познер - доктор философских наук, профессор кафедры философии Московского Государственного техни­ческого университета им Н.Э. Баумана;
1   ...   81   82   83   84   85   86   87   88   ...   255
КОНСТРУКТИВИЗМ (математический) - на

правление в метаматематике и построенные на его ос­нове математические теории (конструктивная логика, конструктивная теория множеств, арифметика, ана­лиз и т. д. и т. п.). Возникло в 40-50-е гг. XX в. в СССР как результат «скрещивания» основных математичес­ких идей интуиционизма (Л. Брауэр, Г. Гейтинг и др.) с аутентичной теорией познания марксизма, где про­цесс познания трактовался не как процесс пассивного отражения сознанием объекта, а как активная деятель­ность мышления с идеальными объектами, изоморф­ными по своей структуре материально-предметной де­ятельности человека. Наиболее видными представите­лями математического конструктивизма были Цейтин, Марков, Шанин, Заславский. С точки зрения конст­руктивистов вся классическая математика является не­достаточно строгой наукой, так как основана на таких «темных» понятиях как «актуальная бесконечность», «универсальный характер законов исключенного тре­тьего и двойного отрицания», логической непротиво­речивости как необходимого и достаточного критерия существования математического объекта и т. д. Со­гласно конструктивистам, основным методом постро­ения математических теорий должна быть не дедук­ция, а конструктивно-генетический метод, согласно которому любой математический объект и любые утверждения о нем должны быть результатом деятель­ности мышления по построению более сложных кон­струкций из более простых, по определенным, про­стым и легко контролируемым правилам построения — алгоритмам, позволяющим с помощью конечного чис­ла шагов, конечного числа операций за конечное вре­мя однозначно получить итоговую конструкцию. Полу- чил широкое признание и развитие в связи с развити-

ем вычислительной математики и информационной техники. (См. интуиционизм, философия математики).



Поделитесь с Вашими друзьями:
1   ...   81   82   83   84   85   86   87   88   ...   255


База данных защищена авторским правом ©nashuch.ru 2017
обратиться к администрации

    Главная страница
Контрольная работа
Курсовая работа
Лабораторная работа
Пояснительная записка
Методические указания
Рабочая программа
Методические рекомендации
Теоретические основы
Практическая работа
Учебное пособие
Общие сведения
Общая характеристика
Федеральное государственное
Дипломная работа
Теоретические аспекты
Общая часть
Самостоятельная работа
Физическая культура
государственное бюджетное
Методическое пособие
квалификационная работа
История развития
Техническое задание
Направление подготовки
Выпускная квалификационная
Технологическая карта
Теоретическая часть
Краткая характеристика
Металлические конструкции
Понятие предмет
прохождении производственной
Общие положения
Техническое обслуживание
Методическая разработка
Исследовательская работа
Практическое занятие
Описание технологического
Электрические машины
Правовое регулирование
Технология производства
Сравнительная характеристика
Технические характеристики
Примерная программа
Организация производства
бюджетное учреждение
Математическое моделирование
теоретические основы
Общие требования
Организация работы
История возникновения
учреждение высшего