А. Р. Познер доктор философских наук, профессор кафедры философии Московского Государственного техни­ческого университета им Н. Э. Баумана



страница85/255
Дата28.09.2018
Размер1.25 Mb.
Название файлаStudmed.ru_lebedev-sa-filosofiya-nauki-slovar-osnovnyh-terminov_d01e2a6ed32.doc
Учебное заведениеА.Р. Познер - доктор философских наук, профессор кафедры философии Московского Государственного техни­ческого университета им Н.Э. Баумана;
1   ...   81   82   83   84   85   86   87   88   ...   255
КОНСТРУКТИВИЗМ (математический) - на

правление в метаматематике и построенные на его ос­нове математические теории (конструктивная логика, конструктивная теория множеств, арифметика, ана­лиз и т. д. и т. п.). Возникло в 40-50-е гг. XX в. в СССР как результат «скрещивания» основных математичес­ких идей интуиционизма (Л. Брауэр, Г. Гейтинг и др.) с аутентичной теорией познания марксизма, где про­цесс познания трактовался не как процесс пассивного отражения сознанием объекта, а как активная деятель­ность мышления с идеальными объектами, изоморф­ными по своей структуре материально-предметной де­ятельности человека. Наиболее видными представите­лями математического конструктивизма были Цейтин, Марков, Шанин, Заславский. С точки зрения конст­руктивистов вся классическая математика является не­достаточно строгой наукой, так как основана на таких «темных» понятиях как «актуальная бесконечность», «универсальный характер законов исключенного тре­тьего и двойного отрицания», логической непротиво­речивости как необходимого и достаточного критерия существования математического объекта и т. д. Со­гласно конструктивистам, основным методом постро­ения математических теорий должна быть не дедук­ция, а конструктивно-генетический метод, согласно которому любой математический объект и любые утверждения о нем должны быть результатом деятель­ности мышления по построению более сложных кон­струкций из более простых, по определенным, про­стым и легко контролируемым правилам построения — алгоритмам, позволяющим с помощью конечного чис­ла шагов, конечного числа операций за конечное вре­мя однозначно получить итоговую конструкцию. Полу- чил широкое признание и развитие в связи с развити-

ем вычислительной математики и информационной техники. (См. интуиционизм, философия математики).



Поделитесь с Вашими друзьями:
1   ...   81   82   83   84   85   86   87   88   ...   255


База данных защищена авторским правом ©nashuch.ru 2019
обратиться к администрации

    Главная страница
Контрольная работа
Курсовая работа
Лабораторная работа
Пояснительная записка
Методические указания
Рабочая программа
Методические рекомендации
Теоретические основы
Практическая работа
Учебное пособие
Общая характеристика
Общие сведения
Теоретические аспекты
Физическая культура
Дипломная работа
Самостоятельная работа
Федеральное государственное
История развития
Направление подготовки
квалификационная работа
Выпускная квалификационная
Общая часть
Техническое задание
Методическое пособие
Технологическая карта
Краткая характеристика
Теоретическая часть
государственное бюджетное
прохождении производственной
Техническое обслуживание
Общие положения
Методическая разработка
Технология производства
Исследовательская работа
Металлические конструкции
Математическое моделирование
Гражданское право
Организация работы
Понятие предмет
Правовое регулирование
учреждение высшего
Технологическая часть
Решение задач
Практическое занятие
Уголовное право
Описание технологического
Основная часть
Метрология стандартизация
История возникновения
Общие требования
Электрические машины